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Abstract 

Evaluative methods in ice hockey alternative to traditional scouting are relatively 

new and fairly flawed. Basic statistics such as Plus-Minus and Points offer little 

insight, while more recently developed metrics and statistical models provide an 

improved albeit incomplete summary of team or player quality. I posit that each of 

the processes that yield goals, and thereby influence game outcomes, may be 

modeled statistically and propose deriving a total rating from the summation of an 

agent’s influence on each of these processes. Non-overlapping partitioning of these 

processes and tailored selection of model specifications ensure that each aspect is 

diligently and optimally accounted for. Conversion to a common currency for 

aggregation is trivial as it is implied in the selection of processes that directly or 

otherwise impact goals. I test the validity of this model and explore practical 

applications. 
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Introduction 

1.1 Purpose 

	
   I aim to derive a complete rating for agents1 participating in hockey games 

that is both descriptive of total impact and actionable in predicting future outcomes. 

A success in this venture would involve one or more applications that are preferable 

to the common alternative. Such applications may include evaluation of talent, 

predicting game outcomes, gambling or storytelling. 

1.2	
  History	
  

	
   The advent of improved, more complete game records in the NHL spurred 

the development of new statistics and performance metrics. In the years preceding 

this era, Plus-Minus (since 1967), Goals and Points were standard tools used for 

player evaluation. The Plus-Minus statistic is defined by the differential of even-

strength or shorthanded goals scored for and against a player’s team while the player 

is on the ice. A major limitation of this measure is the relative infrequency of goals. 

Advances in the league’s event recordings in 2007 led to variants of Plus-Minus 

making use of shots rather than goals. Corsi refers to all shots attempted, while 

Fenwick denotes attempted shots that are unblocked. These may be expressed as 

differentials or percentages, typically in 5v5 situations, and represent a significant 

improvement over Plus-Minus due to the increased size of event samples. They are 

nonetheless rudimentary, and fail to account for numerous confounding factors such 

as quality of teammates or opponents, game states or quality of shots. Attempts to 

adjust these metrics in response to such factors have been made, notable examples of 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  “Agent”	
  will	
  henceforth	
  describe	
  any	
  entity	
  participating	
  in	
  a	
  hockey	
  game	
  by	
  
affecting	
  its	
  outcome	
  and	
  encompasses	
  teams,	
  players	
  and	
  coaches.	
  



	
  
4	
  

which are dCorsi (Burtch 2014), Corsi Plus-Minus (Sprigings 2015) and Score-

Adjusted Corsi/Fenwick (Tulsky 2012, McCurdy 2014). These enhancements have 

varying validity and often account only for a portion of the contextual factors. More 

sophisticated statistical models have come into existence in recent years with 

promising results. In particular, Goals Versus Threshold (GvT) (Awad 2009), Total 

Hockey Rating (THoR) (Schuckers 2013), Adjusted Plus-Minus (MacDonald 2011) 

and WAR (Thomas, Ventura 2015).  

1.3	
  Data	
  

	
   1.3.1	
  Source	
  

The data used were originally compiled and stored in the Corsica 

database. The Play-By-Play is sourced from official NHL game records dating 

back to the 2007-2008 regular season while event coordinates are sourced 

from the Sportsnet and ESPN websites. Salary information was provided by 

WAR On Ice. Other leagues were excluded from the analysis, as the required 

data do not exist publicly. Additional cleansing and processing of these data 

was performed after the initial collection process. Namely, I make use of the 

methods outlined by Krzywicki for regularization of shot coordinates and the 

calculation of absolute shot angle from the central line normal to the goal line 

(Krzywicki 2010). Subsequently, shots are categorized according to custom 

specifications. Rebound shots are defined as those occurring within two 

seconds of uninterrupted game time of a prior unblocked shot. Rush shots are 

defined as those occurring within four seconds of uninterrupted game time of 
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any event having occurred in the shooting team’s defensive zone or any 

giveaway or takeaway event. 

1.3.2 Expected Goals 

I make use of the Corsica shot quality measure introduced in the 2016 

article “Shot Quality and Expected Goals: Part 1” (Perry 2016). A given 

shot’s Expected Goal (xG) value is equal to its estimated probability of 

resulting in a goal. This likelihood estimate is produced using a logistic 

regression model trained on 7 seasons of shot data. Blocked shots are omitted 

due to coordinate missingness. The total training sample consisted of 542,569 

unblocked shots from the 2007-2008 to 2013-2014 seasons. The fitted model 

was tested against shots from the 2014-2015 season and parameters were 

selected in order to optimize out-of-sample predictive validity. The final 

regression contains 6 variables: 

𝛾   ≡   𝑆ℎ𝑜𝑡  𝑡𝑦𝑝𝑒  

𝛿   ≡   𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

𝛼   ≡ 𝐴𝑛𝑔𝑙𝑒  

𝜌   ≡ 𝑅𝑒𝑏𝑜𝑢𝑛𝑑   ∗  

𝜎   ≡ 𝑅𝑢𝑠ℎ   ∗  

𝜃   ≡ 𝑁𝑒𝑢𝑡𝑟𝑎𝑙  𝑧𝑜𝑛𝑒 ∗  

  

∗ 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 

 And obeys an equation of the form: 
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[1]    𝑃! =   
if  𝜃 = 1, 0.00648
if  𝜃 = 0,             !

!!  !!! !
 

  

Where 𝑡 is the function: 

 

[2]      𝑡(𝑖) =   𝛽𝛾0 +   𝛽𝛾1𝛿𝑖
3 +   𝛽𝛾2𝛿𝑖

2   +   𝛽𝛾3𝛿𝑖   +   𝛽𝛾4𝛼𝑖
3 +   𝛽𝛾5𝛼𝑖

2   +   𝛽𝛾6𝛼𝑖 +   𝛽𝛾7𝜌𝑖 +   𝛽𝛾8𝜎𝑖 

 

And 𝑃! gives the probability of a shot i becoming a goal given the independent 

variables aforementioned. The Booleans take on a value of 1 if the condition 

is true and 0 otherwise. Thus, shots taken from the neutral zone are assigned 

a flat xG value equal their average goal probability in the training data subset. 

The intercept 𝛽! and coefficients 𝛽!   ⋯   𝛽! are unique to each shot type 𝛾.  

 

Figure 1: Each bin represents a 2.5% interval, where the marker size is proportional to 

number of observations. Bins totaling fewer than 100 observations were discounted. The 

data used here are not present in the training subset. 

 

The validity of the model was verified out of sample using a series of tests. 

One such test involved iterating a process of selecting a random sample of 

1,000 shots and comparing the predicted and observed goal percentage. The 

R2, P-value and Residual Standard Error were recorded for each of 300 

iterations and averaged. The parameters selected for the final regression 

yielded optimal results in this test. Additionally, the correlation displayed 

between predicted and observed Fenwick Shooting Percentage (FSh%) of xG 
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bins in figure 1 confirms the model’s ability to provide actionable insight. The 

density of shots from the 2015-2016 regular season belonging to various xG 

bins obeys an intuitive pattern as demonstrated in figure 2:  

 

Figure 2: Heat map of 2015-2016 shots coloured by xG levels. 

 

1.4 Desired Properties 

 Before the construction of the model, I take stock of properties an optimal 

rating system should possess. The intention is to remain mindful of these qualities 

and attempt to satisfy as many conditions as is possible while prioritizing the total 

validity of the model.  

• Practicality 

Vitally, an informative evaluation method must have practical applications. 

More strictly, it must represent an advantage over common alternatives sizeable 

enough to justify its relative cost or complexity. As previously discussed, these 

applications may include, but are certainly not limited to, prediction or player 

talent evaluation. In different terms, one should be able to apply a successful 

model to inform fruitful decisions in the context of hockey operations or 

competition such as gambling. 

• Flexibility 

The proposed model must possess the property of being applicable to the end of 

evaluating varieties of agents. Most importantly, an optimal rating system should 

function in identical fashion and be equivalently interpretable for both teams and 
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players. Further, the quality of being component-based is sought. An example of 

such is WAR (Thomas, Ventura 2015), in which the overall rating is equal to the 

sum of multiple components representing either an offensive or defensive 

contribution. Use in hockey leagues other than the NHL is of secondary 

concern, as data limitations represent an equally difficult hurdle for all 

sophisticated statistical models. 

• Scalability 

A drawback of regression-based models is that they often require large sets of 

data. Corsi, by comparison, involves nothing more than addition and division of 

event counts. Thus, it can easily scale between multiple seasons, games or even 

individual shifts by simple aggregation. The ability of a rating system to 

represent single-game performance is contingent on this property. 

Computational requirements may also raise concerns in the case of particularly 

complex models. 

• Reproducibility 

Others should be able to reproduce the results obtained regardless of software or 

computational means. Theoretically, the method should also be applicable to 

any hockey league provided the necessary data are publicly available.  

• Interpretability 

Accessibility is dependent on the ease of interpretability of information yielded 

by the model. Despite the desire for a component-based product, I expect that 

ratings produced by any successful model should exist as single quantities. The 

nature of these ratings should tap into one’s ability to intuit quantities in familiar 
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formats. In accordance to my own preferences, ratings below a given baseline 

should exist as negative quanta, where the preferred baseline is league average. 

 

Model 

2.1 Overview 

What will henceforth be known as the grand model is an approximation of 

goals added resulting from the combination of the influences of an agent on each of 

four unique processes. At minimum, there are four distinctly separate processes in 

hockey by which goals are directly or otherwise produced. The grand model is built 

on the assertion that each of these processes can themselves be modeled with agents 

serving as explanatory variables. An agent can impact the occurrence of goals by 

influencing: 

A. The rate of shots for or against a team 

B. The likelihood of a shot becoming a goal 

C. The rate of penalties taken for or against a team 

D. The game state or context of imminent play  

All varieties of agents are not responsible for every process necessarily. For instance, 

I begin with the assumption that goaltenders do not possess the ability to alter the 

rate of shots. They do, however, affect the goal probability of shots taken against 

them. The involvement of non-goalie agents in the course of play may positively or 

negatively impact the baseline rate at which shots accumulate against teams involved 

in a game. We may model this process and an agent’s influence thereon while 
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controlling for factors that overlap with other processes or do not serve to measure 

the quality of agents under observation.  

 

Figure 3: Diagram of the four main processes and their products.  

 

This first process is approached as a survival problem2, using a Cox proportional 

hazard regression. This method was first employed in 2013 to model the rate of goals 

and assign team and player ratings (Thomas et al. 2013). Here, an attempted shot 

serves as a positive observation. Separately, shooting efficiency is modeled using a 

logistic regression with agents once again acting as explanatory variables. Thus, the 

quantity and quality of shots are modeled separately with no overlap. This principle 

of segregation in tandem with the tailored selection of optimal model specifications 

for each process comprise the main tenets of the grand model.  

2.2 Specifications 

2.2.1 Shot Rates 

 I use a right-censored Cox proportional hazard regression to model the 

rate of shots by the home team and away team independently. The shot 

production process is censored by any player substitution, occurring roughly 

every 11.5 seconds on average. The predictors for both processes are 

comprised of situational indicators such as the state of the game with respect 

to the quantity of skaters on the ice for either team as well as all agents of the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  The	
  name	
  originates	
  from	
  applications	
  in	
  biology	
  and	
  medicine	
  where	
  the	
  binomial	
  
response	
  variable	
  takes	
  the	
  value	
  1	
  if	
  a	
  death	
  is	
  observed	
  and	
  0	
  otherwise.	
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type under observation. The equation for the rate of shots by the home team 

may be written as: 

 

[3]        𝜌! =   𝑒!!!   !!!!!!  !!!!!! !   !!! !! 

 

Where 𝛼! is the baseline home rate in shots per minute, 𝑋!! and 𝑋!! are the 

indicators for each agent on the side of the home and away teams 

respectively, Ω! and δ! are coefficients representing offensive and defensive 

contributions respectively for each agent p, 𝑋! are indicators for each state in S 

and 𝜎! is the corresponding coefficient of that state. S is a vector of length 24, 

9 elements of which pertain to skater strength, 7 of which pertain to the game 

score and 8 of which pertain to the recency of the last face-off and in which 

zone it occurred. We may then write: 

 

[4]    𝐾SR  FOR 𝑝 =    (𝑒!!! −   1)𝛼!𝜓!TOI!! +   (𝑒!!
! −   1)𝛼!𝜓!TOI!!  

[5]            𝐾SR  AGAINST 𝑝 =    (1−   𝑒!!!)𝛼!𝜓!TOI!! +   (1−   𝑒!!
!)𝛼!𝜓!TOI!!  

 

Giving the goals added on offence [4] and defence [5] by a predictor agent p, 

where 𝜓! and 𝜓! are the average goal values of home and away shots 

respectively and TOI!! and TOI!! is the Time On Ice of the agent p in home and 

away games respectively. The net goals added by an agent p is then 

𝐾SR  FOR(𝑝)+   𝐾!"  !"!#$%&(𝑝). A property of equation [3] is that the exponents 
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of the offensive and defensive parameters 𝑒!and 𝑒! are interpretable as 

multipliers on the baseline shot rates.  

2.2.2 Shot Quality 

  Goals added by an agent’s influence on shot quantity is obtained by 

employing the average success of shots as a conversion rate. Independently, 

an agent may influence the quality of shots, or the probability that they will 

result in a goal. I model this process using a logistic regression allowing for 

multiple roles by each agent. Namely, in the case of skaters, agents may 

influence outcomes by acting as the shooter or by being involved in a 

supporting role – on the ice as a non-shooter.  

 

 Figure 4: Matrix of possible roles to be assumed by agents acting on the likelihood of 

goals. 

 

 As with shot quantity, the impacts of various game states are controlled for by 

their inclusion as regression parameters and the exponents of the coefficients 

given by the logistic model are interpretable as multipliers, now on the 

baseline goal odds. This derivation is quite straightforward. Consider the 

logistic function: 

 

[6]              𝑃! =   
!

!!  !!! !
 

 

Where 𝑡 is the linear function: 
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[7]               𝑡(!) =   𝛽! +    𝑋!!𝛽!!  

 

𝑃! gives the goal probability of a shot i, thus:  

 

[8]             
!!

!!  !!
=   𝑒!(!)   =   𝑒!!!   !!!!!!  

 

Is equal to the odds of a goal for shot i. It follows that 𝑒!!  multiplies the base 

odds 𝑒!! . We obtain goals added with the formulas: 

 

[9]      𝐾SHOOTER 𝑝 =    (!!!
!!
!!)!!!

(!!  (!!!
!!
!!)!!!)

iCF! 

[10]              𝐾SUPPORT  FOR 𝑝 =    (!!!
!"
!!)!!!

(!!  (!!!
!"
!!)!!!)

TCF! 

[11]             𝐾SUPPORT  AGAINST 𝑝 =    (!!  !!!
!"
)!!!

(!!  (!!  !!!
!"
)!!!)

CA! 

[12]       𝐾GOALIE 𝑝 =    (!!  !!!
!
)!!!

(!!  (!!  !!!
!
)!!!)

CA! 

 

The sum of which gives the net goals added by an agent. iCF, TCF and CA 

are the individual shots taken, shots taken by teammates while on the ice and 

shots taken against while on the ice. It should be noted that the starting 
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assumption is skaters can act only as shooters or support, while teams act 

uniquely as shooter or goalie. 

 2.2.3 Penalty Rates 

The rate of penalties is modeled similarly to the rate of shots. The same 

survival method is applied here with minor penalties serving as positive 

observations. Major penalties (resulting in 5 minutes of penalty time) are 

omitted due to infrequency in order to mitigate complexity, while double-

minor penalties were treated as two distinct observations. The coefficients 

produced by the Cox regression are equivalently interpretable to those in 

section 2.2.1 with the distinction that, by virtue of multiplying the rate of 

penalties in place of shots, they are inversely proportional in terms of value 

added. This fact is addressed in the conversion to goals: 

  

[13]  𝐾P TAKEN 𝑝 =    (1−   𝑒!!!)𝛼!𝜓TOI!
! +   (1−   𝑒!!!)𝛼!𝜓TOI!

!  

[14]             𝐾P DRAWN 𝑝 =    (𝑒!!! − 1)𝛼!𝜓TOI!
! +   (𝑒!!! −   1)𝛼!𝜓TOI!

!  

 

 Where each variable is analogous to those in equations [4] and [5], and 𝜓 

represents the goal value of a minor penalty, given by the average net goal 

differential over the duration of powerplay (PP) time resulting from minor 

penalties. The sum of both values gives the net goals added by an agent. 

2.2.4 States 

  Least intuitively, and partially an artifact of the methodology used 

heretofore, agents may impact the occurrence of goals in a fourth way. Recall 
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that we’ve controlled for various game situations in each of the three prior 

regressions. This precaution serves to adjust for the effect of usage or 

deployment on skaters – in effect, leveling the playing field. However, it 

ignores the real possibility that skaters themselves may influence these game 

states. In actuality, the process described in 2.2.3 is a sub-category of this 

mechanism. It describes how agents impact the advantage in skaters that may 

occur over the course of play. A second set of circumstances we’ve chosen to 

account for in each process is the score in the game. Agents exert an effect on 

this state by contributing to goals scored. Thus, the impact is already implicit 

in the value of goals added – the very product sought in this model. This 

leaves zone starts. They describe which of the three zones – offensive, 

defensive or neutral – a face-off to begin a shift occurred in. The value of these 

zone starts has been stripped from each goals added component yet produced 

but they may be separately dealt with. I use a multinomial logistic regression 

to model each possible ensuing zone start succeeding a shift end. Agents act 

as predictors alongside the various game state elements, including shift starts. 

Skaters do not earn additional value for creating their own zone starts. Each 

face-off, with the exception of those following an icing infraction, represents a 

decision point at which a coach may choose to substitute players. Hence, so-

called “earned” zone starts may still indicate preferential treatment. Rather, 

skaters are attributed the partial goal value of zone starts created for 

teammates entering play in their place. The multinomial regression yields the 

following equation: 
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[15]      𝑃(Yi=c) =   
!!!∙!!

!!!∙!!!
!!!

 

 

Giving the probability of an outcome c, where 𝛽! is a vector of the coefficients 

associated with the outcome c and 𝑋! is an indicator vector of the variables for 

an observation 𝑖. An agent’s goals added follows: 

 

[16]           ∀𝑐 ∈ 𝑛:  K!! =   Δ!!𝜓!𝑁𝑆! 

 

Where 𝑛 is the set all of possible outcomes, Δ!!  is the difference in probabilities 

of an outcome c relative to baseline due to the involvement of an agent p, 𝜓! is 

the goal value of outcome c, and 𝑁𝑆! is the total number of shifts played by 

agent p. 𝑛 has four elements: three possible zone start outcomes and a shift 

end which does not result in a face-off.  

2.2.5 Cross-Validation and Regularization 

  The conditions for the regressions described afore are conducive to 

overfitting. In particular, the large number of predictors calls for a variable 

selection process. I employ a two-pronged policy of K-fold cross-validation 

and elastic net regularization to optimize model efficiency on a general out-of-

sample data set. For a regression comprised of N observation pairs (𝑥!, 𝑦!) the 

elastic net solves (Friedman et al. 2010): 
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[17]  min(!!,!)∈ℝp+1
!
!N

𝑦! −   𝛽! −   𝑥!T𝛽
!
+   𝜆𝑃!(𝛽)!

!!!  

 

Where 𝑃!(𝛽) is the elastic net penalty: 

 

[18]    𝑃! 𝛽 = 1 −   𝛼 !
!
𝛽 ℓ𝓁!

! +   𝛼 𝛽 ℓ𝓁! 

 

The elastic net mixing parameter 𝛼 was given the value of 0.25 by simple trial. 

From here, K-fold cross-validation was performed for a sequence of lambdas 

of which the optimum was selected.  

 

Figure 5A: The coefficient profile plot of the path for the lambda sequence used for the 

Cox regression of home team shot rates; Figure 5B: The cross-validation curve for the 

lambda sequence used for the Cox regression of home team shot rates. 

 

The number of folds and values of lambda to be validated was dependent on 

the regression and agent type under observation. For teams, 4 folds were used 

and a sequence of 100 lambdas; for skaters, 3 folds and 60 lambda values. 

 

Results 

3.1 Goodness of Fit 

 The cross-validation process identified the penalty term 𝜆 for which the 

computed mean cross-validated error was minimized for each of the regressions. For 
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the Cox regression models, this error is the partial likelihood deviance. For the 

logistic models, they are the binomial or multinomial deviance. The absolute mean 

error was recorded for each cross-validated model, as well as the deviance ratio 

defined as the fraction of the null deviance explained. 

 

 07-08 08-09 09-10 10-11 11-12 12-13* 13-14 14-15 15-16 DF Avg. 

AT 0.01503 0.01586 0.01425 0.01293 0.01217 0.01248 0.01287 0.01251 0.01220 ~70 0.01337 

BT 0.00847 0.00881 0.00562 0.00680 0.00720 0.01027 0.00757 0.00650 0.00777 ~33 0.00767 

CT 0.00756 0.00941 0.00970 0.00812 0.00859 0.00794 0.00732 0.00798 0.00698 ~52 0.00818 

AS - - - - - - 0.21755 0.21800 0.21880 1111 0.21812 

BS - - - - - - 0.03262 0.02565 0.03582 535 0.03136 

CS - - - - - - 0.50700 0.51265 0.51205 153 0.51057 

DS - - - - - - 0.12440 0.11830 0.11940 1505 0.12070 

* Lockout year (48-game regular season) 

Table 1: Average maximum cross-validated deviance ratio of the regressions used in the 

grand model. A-D as labeled in section 2.1, T for Teams as agents, S for Skaters as 

agents. DF = Degrees of Freedom. 

 

3.2 Ratings 

 An agent’s rating K is equal to the sum of each K-component for which their 

agent class is responsible.  

 

[19]       𝐾!  =   𝐾!
!

!  
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Where 𝐾!,𝐾!,  …  ,  𝐾! are the class-dependent K-components. K is interpretable as the 

approximate net goals added by an agent relative to a neutral agent – one that has  

 

Figure 6: The class dependency of K-components for the three major agent types. 

 

neither a positive nor negative influence on any process contained in the grand 

model. Using the specifications described in section 2.2.2, only 16.4% of goaltenders 

evaluated were assigned non-zero coefficients. While the hypothesis that goaltenders 

may impact this process is supported, they do not act as foci in the particular model 

used for teams and skaters. A separate specialized regression was instead used to 

 

 A B C D 

Teams 100.00% 57.92% 97.08% - 

Skaters 99.06% 54.26% 27.96% 100.00% 

Goaltenders - 16.41% - - 

 

Table 2: The percentage of agents by class with non-zero K-components in each of the 

processes A-D as labeled in section 2.1. 

  

generate goalie ratings. In this new logistic model, the observations are limited to 

shots on goal. This dismisses the assumption that goaltenders can cause shots to be 

blocked by skaters or miss the net. Agents acting as goalie or shooter serve as 

predictors, along with the set of game states and the xG value of shots. Lastly, the 

coefficients are regularized using the ridge method, and the model is cross-validated 

using 4 folds. 
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 3.2.1 Team Ratings 

Team K ratings are pro-rated by calculating goals added per 82 games 

in order to account for lockout or otherwise shortened seasons. The Chicago 

Blackhawks of 2012-13 are far and away the best team observed in this 

analysis. In 6 of 8 seasons where a Stanley Cup was awarded, the winner  

2010-11 K 2011-12 K 2012-13* K 2013-14 K 2014-15 K 2015-16 K 

S.J 51.2 STL 63.0 CHIS,P 103.8 BOSP 67.1 T.B 45.6 L.A 48.7 
VANP 43.9 PIT 59.3 PIT 62.6 CHI 49.7 L.A 31.7 DAL 28.9 
BOSS 34.5 BOS 50.6 L.A 60.1 S.J 46.0 CHIS 26.9 PIT 27.0 
CHI 28.8 DET 41.0 BOS 58.4 ANA 41.9 NYI 24.8 ANA 25.2 
PIT 24.9 VANP 39.5 NYR 52.0 L.AS 38.5 NYRP 21.9 WSHP 21.0 
…  …  …  …  …  …  

ANA -31.5 TOR -24.3 EDM -38.9 NYI -31.6 TOR -39.3 OTT -20.4 
NYI -33.3 NYI -26.1 BUF -38.9 TOR -55.0 COL -43.0 ARI -21.3 
MIN -34.7 CBJ -42.8 CAR -39.3 EDM -61.2 ARI -63.2 N.J -26.3 
EDM -43.6 T.B -43.3 CGY -59.8 FLA -68.5 EDM -70.5 TOR -30.8 
COL -62.8 MIN -63.0 FLA -94.8 BUF -93.0 BUF -108.7 COL -39.5 

* Lockout year (48-game regular season).  
P	
  Won	
  President’s	
  Trophy	
  (most	
  regular	
  season	
  points).	
   	
  
S	
  Won	
  Stanley	
  Cup.	
  

Table	
  3:	
  The	
  top	
  and	
  bottom	
  ranked	
  teams	
  for	
  each	
  of	
  the	
  last	
  6	
  seasons.	
  

was	
  among	
  the	
  top-­‐5	
  teams	
  by	
  this	
  metric.	
  5	
  times,	
  they	
  were	
  top-­‐3	
  teams,	
  

and	
  thrice	
  the	
  best	
  overall.	
  In	
  each	
  of	
  9	
  seasons	
  tested,	
  the	
  President’s	
  

Trophy	
  winner	
  was	
  among	
  the	
  top-­‐5	
  teams	
  as	
  rated	
  by	
  K.	
  	
  

 3.2.2 Player Ratings 

The distribution of player ratings does not vary considerably between 

forwards and defencemen, as shown in figure 7. The standard deviation of K 

is 5.53 for forwards and 5.56 for defenders, while it is 9.30 for goaltenders. 
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Figure 7: The distribution of offensive and defensive K-components for forwards and 

defencemen and the distribution of total K for goaltenders. Mean and standard deviation 

shown in red. 

 

The mean is approximately 1 goal above zero and 1 below zero for forwards 

and defencemen respectively. This disadvantage can be attributed in large part 

to the inability of defenders to add goals by acting as shooters relative to a 

neutral agent. The model is agnostic to positions within an agent class, 

making defencemen poorer shooters in comparison to the total mean ability 

of the group. Only Nick Holden in 2013-14 managed a positive shooter K. 

Table 4 contains the best and worst 5 players at each position over each of the 

last three years according to total K. The best single season for a skater  

 2013-14 K 2014-15 K 2015-16* K 
Forward J. Toews 28.2 N. Kucherov 24.2 P. Kane 25.1 

 A. Kopitar 27.2 J. Toews 22.8 L. Eriksson 23.5 
 C. Perry 24.9 V. Tarasenko 19.6 E. Kuznetsov 22.5 
 J. Jagr 22.1 N. Foligno 18.8 P. Bergeron 21.0 
 J. Williams 19.6 J. Tavares 18.6 T. Toffoli 21.0 
 …  …  …  
 E. Nystrom -13.5 N. Thompson -11.0 R. Reaves -10.3 
 A. Chiasson -16.0 D. MacKenzie -11.1 J. Stoll -11.3 
 S. Ott -17.6 T. Vanek -11.5 P. Gaustad -11.5 
 N. Yakupov -19.0 C. Stewart -11.9 M. Boedker -13.8 
 J. Spezza -20.3 C. Paquette -11.9 D. Stafford -17.3 

Defence M. Niskanen 24.5 K. Shattenkirk 25.1 C. Parayko 30.4 
 M. Giordano 22.5 A. Stralman 23.1 J. Klingberg 24.2 
 B. Seabrook 17.0 T. Barrie 21.2 R. McDonagh 19.8 
 A. Pietrangelo 14.0 K. Letang 15.9 P.K. Subban 19.3 
 R. Ellis 13.8 D. Keith 15.5 M. Ekholm 17.8 
 …  …  …  
 D. Girardi -13.1 N. Kronwall -11.5 B. Hutton -11.0 
 A. Edler -14.2 D. Engelland -11.5 J. Merrill -11.1 
 D. Boyle -14.6 N. Guenin -12.8 J. Bouwmeester -11.9 
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 A. MacDonald -19.2 D. Seidenberg -13.1 B. Seabrook -12.7 
 M. Weber -22.7 T. Daley -16.0 D. Girardi -14.5 

Goalie H. Lundqvist 27.2 C. Price 32.9 B. Elliott 30.2 
 C. Price 24.0 B. Holtby 22.4 C. Crawford 17.7 
 S. Varlamov 22.6 C. Schneider 18.2 C. Schneider 15.6 
 T. Rask 20.6 M.A. Fleury 16.7 T. Greiss 15.5 
 K. Lehtonen 18.7 H. Lundqvist 16.4 H. Lundqvist 13.4 
 …  …  …  
 D. Ellis -15.4 N. Backstrom -15.1 J. Bernier -13.5 
 A. Lindback -16.3 C. Johnson -15.9 M. Condon -14.2 
 R. Berra -16.6 R. Emery -17.5 G. Sparks -14.2 
 K. Poulin -19.0 M. Smith -19.4 J. Hiller -21.2 
 D. Dubnyk -20.1 B. Scrivens -38.7 P. Rinne -26.5 

* Playoffs excluded 

Table	
  4:	
  The	
  top	
  and	
  bottom	
  ranked	
  players	
  by	
  position	
  for	
  each	
  of	
  the	
  last	
  three	
  

seasons.	
  

	
  

belongs to Colton Parayko in 2015-16. Carey Price holds the best rating 

among	
  all	
  players	
  for	
  his	
  2014-­‐15	
  season	
  performance.	
  Ben	
  Scrivens	
  in	
  the	
  

same	
  year	
  is	
  a	
  distant	
  worst,	
  at	
  38.7	
  goals	
  below	
  baseline.	
  

 3.3.3 Multi-Year Ratings 

The regressions were limited to single seasons because memory 

requirements for multi-year computations exceeded the limits of the system 

used. Aggregate ratings for agents spanning multiple seasons are reported as 

rates of total goals added, by game played or time on ice. Here, games played 

is preferred as it accounts for the value added by playing a greater quantity of 

minutes. The greater relative importance of defencemen due to this fact 

becomes implicit. Let K/82 define the approximate goals added by an agent 

per 82 games played relative to a neutral agent. We find that Pavel Datsyuk 
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 Forward K/82 Defence K/82 Goalie K/82 Team K/82 

 P. Datsyuk 19.1 K. Letang 13.5 C. Price 32.0 L.A 39.3 
 J. Toews 18.6 J. Klingberg 12.8 B. Elliott 22.3 CHI 28.2 
 J. Jagr 17.8 R. McDonagh 11.3 C. Schneider 21.4 BOS 27.3 
 P. Bergeron 17.7 P.K. Subban 10.6 H. Lundqvist 21.3 ANA 24.9 
 J. Thornton 16.4 M-E. Vlasic 10.0 S. Varlamov 13.6 STL 21.9 
 L. Eriksson 15.9 M. Giordano 9.7 J. Halak 13.2 T.B 21.6 
 T. Toffoli 14.2 A. Stralman 9.3 S. Mason 13.1 S.J 20.3 
 J. Pavelski 14.2 K. Shattenkirk 9.3 C. Crawford 13.0 PIT 20.2 
 C. Perry 14.0 E. Karlsson 8.3 C. Talbot 12.3 DAL 15.6 
 P. Kane 13.9 D. Keith 7.9 B. Holtby 10.2 NYR 12.8 
 …  …  …  …  
 E. Nystrom -7.0 J. Bouwmeester -8.8 M. Smith -5.4 CBJ -11.3 
 L. Korpikoski -7.2 M. Irwin -8.8 J. Howard -7.7 OTT -12.4 
 D. Stafford -7.2 N. Guenin -8.9 J. Bernier -10.2 N.J -16.1 
 T. Glass -7.4 B. Strait -9.0 K. Ramo -10.3 FLA -20.0 
 G. Campbell -7.6 D. Girardi -9.4 A. Niemi -10.8 COL -22.0 
 P. Gaustad -7.7 D. Seidenberg -10.4 J. Hiller -14.0 ARI -26.3 
 S. Ott -8.2 L. Smid -10.8 J. Reimer -14.3 CGY -27.2 
 J. Lupul -8.8 J. Merrill -11.0 C. Ward -15.0 TOR -41.6 
 C. Paquette -10.3 A. Edler -11.2 P. Rinne -15.4 EDM -47.2 
 N. Yakupov -11.7 S. Gonchar -11.3 B. Scrivens -24.8 BUF -70.3 

 
Table 5: Best and worst aggregate K/82 for each agent class and position from 2013-2016. 

 

supplies the most positive impact per game of action among all regular skaters 

(having played 2,000 or more minutes) over the past 3 seasons. Carey Price is 

the best-ranked starting goaltender (having played 100 or more games) in that 

span. 

3.3.4 Validity 

Various tests were performed in order to verify that, and to what 

extent, the ratings produced by the model were representative of the quality of 

agents under observation. Verifying that K is descriptive of quality is only 

superficial in evaluating its validity, as it is a purely retrospective venture. As 
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stated in section 1.1, the property of informing predictions for future 

outcomes is paramount. To begin, the correlation between teams’ point 

 

Figure 8: A comparison of the relationship between various metrics and team points. Z-

Scores are used to standardize the measures. 

 

totals and their K ratings was examined in comparison with two alternate 

evaluative measures. K was far more descriptive of success in the regular 

season than 5v5 Corsi-For percentage (CF%) and expected Goals-For 

percentage (xGF%) with a reported R2 value of 0.6828. For perspective, 

teams’ Goals-For percentage (GF%) in all situations produced an R2 value of 

0.8807 in the same test. Next, box and whisker plots were produced to 

visualize the distribution of players’ K ratings categorized by position and 

according to Time On Ice percentage (TOI%) and Salary bins. With the  

 

Figure 9: Box and whisker plots for players’ K by season from 2013-2016, coloured by 

position and grouped by TOI% (left) and Salary (right) bins. 

 

apparent exception of top-paid defencemen, players appear to be generally 

rewarded with more ice time and more lucrative contracts as K increases. This 

trend appeals to the notion NHL coaches and General Managers are astute 

talent evaluators, though we expect some exploitable inefficiency on their 

part. Because player ability is assumed relatively constant, we expect a 

statistically significant correlation between K in consecutive seasons. This 
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idea is satisfied by comparing the linear relationship between year-over-year 

player-K ratings against other evaluative metrics. While the reported 

Metric Residual Standard Error R2 P-Value 

K 5.79 on 994 DF 0.1799 < 2.2e-16 

+/- 10.20 on 1008 DF 0.1015 < 2.2e-16 
5v5 CF% 3.24 on 1008 DF 0.3653 < 2.2e-16 

 
Table 6: Summary of the linear fit between regular players’ (having played 41 or more 

games) ratings according to various metrics in consecutive seasons. 

  

correlation coefficient is stronger for 5v5 CF%, it is worth noting that this 

measure does not adequately account for the influence of teammates. Lastly, 

a simple forward-looking experiment was conducted to ensure that the 

strength of teams’ rosters as approximated by total player-K was successful in 

predicting regular season performance to a statistically significant degree. A 

crude model was constructed using each team’s opening-night roster, where 

total player-K is the sum of each player’s K in the previous (Y-1) season. 

Where this value was absent, a flat rating of zero was assigned. This roster 

quality measure served as a predictor in a linear regression where regular 

season points is the dependent variable. The reported P-Value in this test was 

0.000077, and the Residual Standard Error of 12.63 was slightly smaller than 

that of Y-1 team 5v5 CF% at 12.74. It is reasonable to expect that this 

predictive method can be greatly improved upon by using multi-year K and a 

multivariate model.  
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Discussion 

4.1 Applications 

 The primary applications of K ratings are prediction and team or player 

evaluation. Simple predictive models were designed in order to verify that the use of 

information yielded by this experiment is advantageous to common alternatives. 

Using data from the past 8 seasons, each of regular season points per 82 (P/82), 5v5 

CF%, 5v5 xGF% and K/82 in the previous season were used as predictors for regular 

season team points. Each metric was tested on 8 folds. In each, one season was kept 

as a testing subset and the remaining 7 to train the linear regression model. The 

residual standard error produced in the testing data was averaged over all 8 folds, 

giving the Mean Residual Standard Error (MRSE) summarized in table 7. The best 

results were obtained using Y-1 K/82 indicating potential predictive validity at the  

Y-1 Measure P/82 5v5 CF% 5v5 xGF% K/82 

MRSE 9.66 9.84 9.79 9.30 
 
Table 7: 8-fold Mean Residual Standard Error of various linear models. Each Y-1 

measure was used as a lone predictor for regular season team points. 

 

team level. Supporting evidence is provided by a second test in which the outcomes 

of playoff series were predicted using basic logistic regression models. The same 

metrics were tested, this time both teams’ regular season ratings serving as 

covariants. An iterative random sampling process was used, whereby 20% of the 

total data were kept as a testing set and the remaining 80% served as training data. In 

each of 10,000 iterations the logarithmic loss was calculated for fitted probabilities in 
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the random testing set and these values were subsequently averaged. At 0.6488, K/82 

once again performed the best of the 4 metrics tested. For comparison, 5v5 xGF% 

was second best at 0.6848 and 5v5 CF% was the worst at 0.6966. 

4.2 Curiosities 

 This analysis produced several noteworthy findings, many of which have 

been detailed in previous sections. Others are briefly reported here with the intent of 

encouraging further exploration. In addition to the superior results yielded by the 

series prediction model constructed using team K/82, it was found that teams with 

the advantage in this rating won 64.12% of playoff series since the 2008 postseason. 

This crude algorithm performed within 6 percentage points of the theoretical upper 

limit for NHL playoff series predictions (Weissbock 2013). For comparison, teams 

with the home ice advantage won roughly 55% of series in the same sample. A brief 

investigation was conducted on how the relationship between player K and both 

TOI% and Salary differs according to player position. Quantile-Quantile plots were 

produced to compare the distribution of residuals between positions. The greatest 

inefficiency in evaluation appears to exist at the goaltender position, with defence  

 

Figure 10: Q-Q plots displaying the actual and theoretical residual quantiles for the linear 

models K/82 ~ TOI% (left) and K/82 ~ Salary (right).  

 

coming second. We do not infer from this that the inefficiency lies within the 

allocation of salary or ice time.  
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4.3 Limitations 

Though practical applications of K have been uncovered, the model is not 

without limitations. Some may be addressed, while others are by-products of 

complex regression modeling that are inescapable. For one, the process is slow and 

clumsy. The sheer number of both variables and observations at the skater level, 

particularly among the Cox regressions, coupled with the cross-validation and 

regularization policies employed significantly lengthen the execution time. Variables 

were restricted to players having appeared in 10 or more games in order to mitigate 

this effect. Using parallel computing on two cores, the grand model for one season of 

skaters requires roughly 24 system hours to reach completion. Scalability is a second 

concern. Data requirements and nontrivial run times mean computation of K does 

not generalize well to arbitrary subsets of games or date ranges. This is especially true 

of skaters, when it is impractical in most cases to compile ratings at regular intervals. 

Team and goaltender ratings may be computed at semi-regular intervals such that a 

predictive model may anchor itself to the most recent iterate or employ a Bayesian 

approach. Additionally, some K-components are prone to significant variance across 

seasons. In particular, the goals added by skaters acting as support on the goal 

probability of shots for or against their team (KSUPPORT FOR, KSUPPORT AGAINST) does not 

often persist in consecutive seasons. Predictive validity may be improved by altering 

the regularization parameters or by removing this item entirely.  
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